skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Collins, Courtney"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Accompanying the climate crisis is the more enigmatic biodiversity crisis. Rapid reorganization of biodiversity due to global environmental change has defied prediction and tested the basic tenets of conservation and restoration. Conceptual and practical innovation is needed to support decision making in the face of these unprecedented shifts. Critical questions include: How can we generalize biodiversity change at the community level? When are systems able to reorganize and maintain integrity, and when does abiotic change result in collapse or restructuring? How does this understanding provide a template to guide when and how to intervene in conservation and restoration? To this end, we frame changes in community organization as the modulation of external abiotic drivers on the internal topology of species interactions, using plant–plant interactions in terrestrial communities as a starting point. We then explore how this framing can help translate available data on species abundance and trait distributions to corresponding decisions in management. Given the expectation that community response and reorganization are highly complex, the external‐driver internal‐topology (EDIT) framework offers a way to capture general patterns of biodiversity that can help guide resilience and adaptation in changing environments. 
    more » « less
  2. The below-ground growing season often extends beyond the above-ground growing season in tundra ecosystems. However, we do not yet know where and when this occurs and whether these phenological asynchronies are driven by variation in local vegetation communities or by spatial variation in microclimate. Here, we combined above- and below-ground plant phenology metrics to compare the relative timings and magnitudes of leaf and root growth and senescence across microclimates and plant communities at five sites across the tundra biome. We observed asynchronous growth between above-ground and below-ground plant tissue, with the below-ground season extending up to 74% beyond the onset of above-ground leaf senescence. Plant community type, rather than microclimate, was a key factor controlling the timing, productivity and growth rates of roots, with graminoid roots exhibiting a distinct ‘pulse’ of growth later into the growing season than shrub roots. Our findings indicate the potential of vegetation change to influence below-ground carbon storage as roots remain active in unfrozen soils for longer as the climate warms. Taken together, increased root growth in soils that remain thawed later into the growing season, in combination with ongoing tundra vegetation change including increased shrubs and graminoids, can act together to alter below-ground productivity and carbon cycling in the tundra biome. 
    more » « less
  3. ABSTRACT Forecasting plant responses under global change is a critical but challenging endeavour. Despite seemingly idiosyncratic responses of species to global change, greater generalisation of ‘winners’ and ‘losers’ may emerge from considering how species functional traits influence responses and how these responses scale to the community level. Here, we synthesised six long‐term global change experiments combined with locally measured functional traits. We quantified the change in abundance and probability of establishment through time for 70 alpine plant species and then assessed if leaf and stature traits were predictive of species and community responses across nitrogen addition, snow addition and warming treatments. Overall, we found that plants with more resource‐acquisitive trait strategies increased in abundance but each global change factor was related to different functional strategies. Nitrogen addition favoured species with lower leaf nitrogen, snow addition favoured species with cheaply constructed leaves and warming showed few consistent trends. Community‐weighted mean changes in trait values in response to nitrogen addition, snow addition and warming were often different from species‐specific trait effects on abundance and establishment, reflecting in part the responses and traits of dominant species. Together, these results highlight that the effects of traits can differ by scale and response of interest. 
    more » « less
  4. null (Ed.)
    Abstract Rapid climate warming is altering Arctic and alpine tundra ecosystem structure and function, including shifts in plant phenology. While the advancement of green up and flowering are well-documented, it remains unclear whether all phenophases, particularly those later in the season, will shift in unison or respond divergently to warming. Here, we present the largest synthesis to our knowledge of experimental warming effects on tundra plant phenology from the International Tundra Experiment. We examine the effect of warming on a suite of season-wide plant phenophases. Results challenge the expectation that all phenophases will advance in unison to warming. Instead, we find that experimental warming caused: (1) larger phenological shifts in reproductive versus vegetative phenophases and (2) advanced reproductive phenophases and green up but delayed leaf senescence which translated to a lengthening of the growing season by approximately 3%. Patterns were consistent across sites, plant species and over time. The advancement of reproductive seasons and lengthening of growing seasons may have significant consequences for trophic interactions and ecosystem function across the tundra. 
    more » « less
  5. null (Ed.)
    Observations of changes in phenology have provided some of the strongest signals of the effects of climate change on terrestrial ecosystems. The International Tundra Experiment (ITEX), initiated in the early 1990s, established a common protocol to measure plant phenology in tundra study areas across the globe. Today, this valuable collection of phenology measurements depicts the responses of plants at the colder extremes of our planet to experimental and ambient changes in temperature over the past decades. The database contains 150,434 phenology observations of 278 plant species taken at 28 study areas for periods of 1 to 26 years. Here we describe the full dataset to increase the visibility and use of these data in global analyses, and to invite phenology data contributions from underrepresented tundra locations. Portions of this tundra phenology database have been used in three recent syntheses, some datasets are expanded, others are from entirely new study areas, and the entirety of these data are now available at the Polar Data Catalogue (https://doi.org/10.21963/13215). 
    more » « less
  6. Abstract Global climate and land use change are causing woody plant encroachment in arctic, alpine, and arid/semi‐arid ecosystems around the world, yet our understanding of the belowground impacts of this phenomenon is limited. We conducted a globally distributed field study of 13 alpine sites across four continents undergoing woody plant encroachment and sampled soils from both woody encroached and nearby herbaceous plant community types. We found that woody plant encroachment influenced soil microbial richness and community composition across sites based on multiple factors including woody plant traits, site level climate, and abiotic soil conditions. In particular, root symbiont type was a key determinant of belowground effects, as Nitrogen‐fixing woody plants had higher soil fungal richness, while Ecto/Ericoid mycorrhizal species had higher soil bacterial richness and symbiont types had distinct soil microbial community composition. Woody plant leaf traits indirectly influenced soil microbes through their impact on soil abiotic conditions, primarily soil pH and C:N ratios. Finally, site‐level climate affected the overall magnitude and direction of woody plant influence, as soil fungal and bacterial richness were either higher or lower in woody encroached versus herbaceous soils depending on mean annual temperature and precipitation. All together, these results document global impacts of woody plant encroachment on soil microbial communities, but highlight that multiple biotic and abiotic pathways must be considered to scale up globally from site‐ and species‐level patterns. Considering both the aboveground and belowground effects of woody encroachment will be critical to predict future changes in alpine ecosystem structure and function and subsequent feedbacks to the global climate system. 
    more » « less